2,202 research outputs found

    The importance of internal facial features in learning new faces.

    Get PDF
    For familiar faces, the internal features (eyes, nose, and mouth) are known to be differentially salient for recognition compared to external features such as hairstyle. Two experiments are reported that investigate how this internal feature advantage accrues as a face becomes familiar. In Experiment 1, we tested the contribution of internal and external features to the ability to generalize from a single studied photograph to different views of the same face. A recognition advantage for the internal features over the external features was found after a change of viewpoint, whereas there was no internal feature advantage when the same image was used at study and test. In Experiment 2, we removed the most salient external feature (hairstyle) from studied photographs and looked at how this affected generalization to a novel viewpoint. Removing the hair from images of the face assisted generalization to novel viewpoints, and this was especially the case when photographs showing more than one viewpoint were studied. The results suggest that the internal features play an important role in the generalization between different images of an individual's face by enabling the viewer to detect the common identity-diagnostic elements across non-identical instances of the face

    Coronal Mass Ejection Detection using Wavelets, Curvelets and Ridgelets: Applications for Space Weather Monitoring

    Full text link
    Coronal mass ejections (CMEs) are large-scale eruptions of plasma and magnetic feld that can produce adverse space weather at Earth and other locations in the Heliosphere. Due to the intrinsic multiscale nature of features in coronagraph images, wavelet and multiscale image processing techniques are well suited to enhancing the visibility of CMEs and supressing noise. However, wavelets are better suited to identifying point-like features, such as noise or background stars, than to enhancing the visibility of the curved form of a typical CME front. Higher order multiscale techniques, such as ridgelets and curvelets, were therefore explored to characterise the morphology (width, curvature) and kinematics (position, velocity, acceleration) of CMEs. Curvelets in particular were found to be well suited to characterising CME properties in a self-consistent manner. Curvelets are thus likely to be of benefit to autonomous monitoring of CME properties for space weather applications.Comment: Accepted for publication in Advances in Space Research (3 April 2010

    Direct amplification of nodD from community DNA reveals the genetic diversity of Rhizobium leguminosarum in soil

    Get PDF
    Sequences of nodD, a gene found only in rhizobia, were amplified from total community DNA isolated from a pasture soil. The polymerase chain reaction (PCR) primers used, Y5 and Y6, match nodD from Rhizobium leguminosarum biovar trifolii, R. leguminosarum biovar viciae and Sinorhizobium meliloti. The PCR product was cloned and yielded 68 clones that were identified by restriction pattern as derived from biovar trifolii [11 restriction fragment length polymorphism (RFLP) types] and 15 clones identified as viciae (seven RFLP types). These identifications were confirmed by sequencing. There were no clones related to S. meliloti nodD. For comparison, 122 strains were isolated from nodules of white clover (Trifolium repens) growing at the field site, and 134 from nodules on trap plants of T. repens inoculated with the soil. The nodule isolates were of four nodD RFLP types, with 77% being of a single type. All four of these patterns were also found among the clones from soil DNA, and the same type was the most abundant, although it made up only 34% of the trifolii-like clones. We conclude that clover selects specific genotypes from the available soil population, and that R. leguminosarum biovar trifolii was approximately five times more abundant than biovar viciae in this pasture soil, whereas S. meliloti was rare

    Enhanced stability of the square lattice of a classical bilayer Wigner crystal

    Full text link
    The stability and melting transition of a single layer and a bilayer crystal consisting of charged particles interacting through a Coulomb or a screened Coulomb potential is studied using the Monte-Carlo technique. A new melting criterion is formulated which we show to be universal for bilayer as well as for single layer crystals in the case of (screened) Coulomb, Lennard--Jones and 1/r^{12} repulsive inter-particle interactions. The melting temperature for the five different lattice structures of the bilayer Wigner crystal is obtained, and a phase diagram is constructed as a function of the interlayer distance. We found the surprising result that the square lattice has a substantial larger melting temperature as compared to the other lattice structures. This is a consequence of the specific topology of the defects which are created with increasing temperature and which have a larger energy as compared to the defects in e.g. a hexagonal lattice.Comment: Accepted for publication in Physical Review

    The Debye-Waller Factor in solid 3He and 4He

    Full text link
    The Debye-Waller factor and the mean-squared displacement from lattice sites for solid 3He and 4He were calculated with Path Integral Monte Carlo at temperatures between 5 K and 35 K, and densities between 38 nm^(-3) and 67 nm^(-3). It was found that the mean-squared displacement exhibits finite-size scaling consistent with a crossover between the quantum and classical limits of N^(-2/3) and N^(-1/3), respectively. The temperature dependence appears to be T^3, different than expected from harmonic theory. An anisotropic k^4 term was also observed in the Debye-Waller factor, indicating the presence of non-Gaussian corrections to the density distribution around lattice sites. Our results, extrapolated to the thermodynamic limit, agree well with recent values from scattering experiments.Comment: 5 figure

    The Reduced Folate Carrier (SLC19A1) c.80G>A Polymorphism is associated with red cell folate concentrations among women

    Get PDF
    Low folate status may be a consequence of suboptimal intake, transport or cellular utilization of folate and, together with elevated homocysteine, is a recognized risk factor/marker for several human pathologies. As folate transport across cell membranes is mediated in part by the reduced folate carrier (RFC1), variants within this gene may influence disease risk via an effect on folate and/or homocysteine levels. The present study was undertaken to assess the association between the SLC19A1 (RFC1) c.80G>A polymorphism and folate/homocysteine concentrations in healthy young adults from Northern Ireland. The SLC19A1 c.80G>A polymorphism was not strongly associated with either serum folate or homocysteine concentrations in either men or women. However, in women, but not in men, this polymorphism explained 5% of the variation in red blood cell (RBC) folate levels (P=0.02). Relative to women with the SLC19A1 c.80GG genotype, women with the GA and AA genotypes had higher RBC folate concentrations. Consequently, compared to women with the SLC19A1 c.80AA and GA genotypes, women who are homozygous for the 80G allele may be at increased risk of having a child affected with a neural tube defect and of developing pathologies that have been associated with folate insufficiency, such as cardiovascular disease

    Nature of Sonoluminescence: Noble Gas Radiation Excited by Hot Electrons in "Cold" Water

    Get PDF
    We show that strong electric fields occurring in water near the surface of collapsing gas bubbles because of the flexoelectric effect can provoke dynamic electric breakdown in a micron-size region near the bubble and consider the scenario of the SBSL. The scenario is: (i) at the last stage of incomplete collapse of the bubble the gradient of pressure in water near the bubble surface has such a value and sign that the electric field arising from the flexoelectric effect exceeds the threshold field of the dynamic electrical breakdown of water and is directed to the bubble center; (ii) mobile electrons are generated because of thermal ionization of water molecules near the bubble surface; (iii) these electrons are accelerated in ''cold'' water by the strong electric fields; (iv) these hot electrons transfer noble gas atoms dissolved in water to high-energy excited states and optical transitions between these states produce SBSL UV flashes in the trasparency window of water; (v) the breakdown can be repeated several times and the power and duration of the UV flash are determined by the multiplicity of the breakdowns. The SBSL spectrum is found to resemble a black-body spectrum where temperature is given by the effective temperature of the hot electrons. The pulse energy and some other characteristics of the SBSL are found to be in agreement with the experimental data when realistic estimations are made.Comment: 11 pages (RevTex), 1 figure (.ps
    corecore